Technical Performance Specifications



#### **ICC INSTALLATION INSTRUCTIONS - CONCRETE**

|                  | <ol> <li>Drill a hole into the base material with a hammer drill tool to the size and embedment required by the selected steel hardware element. The tolerances of the carbide drill bit must meet the requirements of ANSI Standard B212.15.</li> <li>Precaution: Wear suitable eye and skin protection. Avoid inhalation of dusts during drilling and/or removal. <i>Note: In case of standing water in the drilled bore hole, all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning.</i></li> </ol>                                                                                                                                                                                                           |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| or               | <ul> <li>2a. In case of standing water in the drilled bore hole, all the water has to be removed from the hole (e.g. vacuum, compressed air, etc.) prior to cleaning. Starting from the bottom or back of the anchor hole, blow the hole clean a minimum of four times (4x).</li> <li>Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar) sizes #3 to #6.</li> <li>Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump must not be used with these anchor sizes.</li> </ul>                                                                                                                  |
| <u>*****</u> *** | <b>2b.</b> Determine brush diameter for the drilled hole and attach the brush with adapter to a rotary drill tool or battery screw gun. Brush the hole with the selected wire brush a minimum of four times (4x). A brush extension must be used for holes drilled deeper than the listed brush length. The wire brush diameter must be checked periodically during use ( $\emptyset_{brush} > D_{min}$ ). The brush should resist insertion into the drilled hole - if not the brush is too small and must be replaced with the proper brush diameter.                                                                                                                                                                                                        |
| or               | <ul> <li>2c. Finally, blow the hole clean again a minimum of four times (4x).</li> <li>Use a compressed air nozzle (min. 90 psi) or a hand pump (min. volume 25 fl. oz.) for anchor rod 3/8" to 3/4" diameter or reinforcing bar (rebar) sizes #3 to #6.</li> <li>Use a compressed air nozzle (min. 90 psi) for anchor rod 7/8" to 1-1/4" diameter and rebar sizes #7 to #10. A hand pump must not be used with these anchor sizes.</li> <li>When finished the hole should be clean and free of dust, debris, ice, grease, oil or other foreign material.</li> </ul>                                                                                                                                                                                           |
|                  | <ul> <li>Check adhesive expiration date on cartridge label. Do not use expired product. Review Material Safety Data Sheet (MSDS) before use. Cartridge temperature must be between 41°F - 95°F (5°C - 35°C) when in use. Review working and cure times. Consideration should be given to the reduced gel (working) time of the adhesive in warm temperatures. Attach a supplied mixing nozzle to the cartridge. Do not modify the mixer in any way and make sure the mixing element is inside the nozzle. Load the cartridge into the correct dispensing tool.</li> <li><i>Note: Always use a new mixing nozzle with new cartridges of adhesive and also for all work interruptions exceeding the published gel (working) time of the adhesive.</i></li> </ul> |

**Technical Performance Specifications** 



| I- hef -I             | 4.  | Prior to inserting the anchor rod or rebar into the filled bore hole, the position of the embedment depth has to be marked on the anchor. Verify anchor element is straight and free of surface damage.                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| min. 3 full<br>stroke | 5.  | Adhesive must be properly mixed to achieve published properties. Prior to dispensing adhesive into the drilled hole, separately dispense at least three full strokes of adhesive through the mixing nozzle until the adhesive is a consistent gray color.                                                                                                                                                                                                                                                                                         |
| Q                     |     | Review and note the published working and cure times prior to injection of the mixed adhesive into the cleaned anchor hole.                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 6.  | Fill the cleaned hole approximately two-thirds full with mixed adhesive starting from the bottom or back of the anchor hole. Slowly withdraw the mixing nozzle as the hole fills to avoid creating air pockets or voids. If the bottom or back of the anchor hole is not reached with the mixing nozzle, only an extension nozzle (3/8" dia.) must be used with the mixing nozzle.                                                                                                                                                                |
|                       |     | Piston plugs must be used with an attached mixing nozzle and extension tube for horizontal and overhead installations with anchor rod 5/8" to 1-1/4" diameter and rebar sizes #5 to #10. Insert piston plug to the back of the drilled hole and inject as described in the method above. During installation, the piston plug will be naturally extruded from the drilled hole by the adhesive pressure.                                                                                                                                          |
|                       |     | <b>Attention!</b> Do not install anchors overhead without proper training and installation hardware provided by CTS. Contact CTS for details prior to use.                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 7.  | The anchor should be free of dirt, grease, oil or other foreign material. Push clean threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. Observe the gel (working) time.                                                                                                                                                                                                                                                            |
|                       | 8.  | Be sure that the anchor is fully seated at the bottom of the hole, and that some adhesive has flowed from the hole and all around the top of the anchor. If there is not enough adhesive in the hole, the installation must be repeated. For overhead applications, and applications between horizontal and overhead, the anchor must be secured from moving/falling during the cure time (e.g. wedges). Minor adjustments to the anchor may be performed during the gel time, but the anchor shall not be moved after placement and during cure. |
| 68° F                 | 9.  | Allow the adhesive anchor to cure to the specified full curing time prior to applying any load.<br>Do not disturb, torque or load the anchor until it is fully cured.                                                                                                                                                                                                                                                                                                                                                                             |
| Tinst                 | 10. | <ul> <li>After full curing of the adhesive anchor, a fixture can be installed to the anchor and tightened up to the maximum torque by using a calibrated torque wrench.</li> <li>Take care not to exceed the maximum torque for the selected anchor.</li> </ul>                                                                                                                                                                                                                                                                                   |



Technical Performance Specifications

#### **CLEANING OF THE DRILL HOLE - CONCRETE**





| Threaded rod | Rebar  | Bore hole- $\varnothing$ | Brush- $\varnothing$             | Min. brush- $arnothing$   | Piston plug |
|--------------|--------|--------------------------|----------------------------------|---------------------------|-------------|
| (Inch)       | (Inch) | (Inch)                   | $\mathbf{d}_{\mathrm{b}}$ (Inch) | d <sub>b,min</sub> (Inch) | (Nr.)       |
| 3/8          |        | 7/16                     | 0.528                            | 0.458                     |             |
| _            | #3     | 1/2                      | 0.591                            | 0.520                     |             |
| 1/2          | _      | 9/16                     | 0.654                            | 0.582                     |             |
| _            | #4     | 5/8                      | 0.720                            | 0.650                     |             |
| 5/8          | #5     | 3/4                      | 0.846                            | 0.775                     |             |
| 3/4          | #6     | 7/8                      | 0.976                            | 0.905                     |             |
| 7/8          | #7     | 1                        | 1.122                            | 1.030                     | #7          |
| 1            | #8     | 1-1/8                    | 1.252                            | 1.160                     | #8          |
| 1-1/4        | #9     | 1-3/8                    | 1.504                            | 1.410                     | #9          |
|              | #10    | 1-1/2                    | 1.630                            | 1.535                     | #10         |



**Technical Performance Specifications** 

### **SETTING PARAMETER - CONCRETE**

| Anchor size                            | Anchor size         |         |       |                       |        | 3/4   | 7/8               | 1               | 1- 1/4 |
|----------------------------------------|---------------------|---------|-------|-----------------------|--------|-------|-------------------|-----------------|--------|
| Effectness factor (cracked concrete)   | k <sub>c,cr</sub>   | [-]     |       |                       |        | 17    |                   |                 |        |
| Effectness factor (uncracked concrete) | k <sub>c,uncr</sub> | [-]     |       |                       |        | 24    |                   |                 |        |
| Min. edge distance                     | $\mathbf{C}_{\min}$ | [inch]  | 1.88  | 2.50                  | 3.13   | 3.75  | 4.38              | 5.00            | 6.25   |
| Min. axial distance                    | S <sub>min</sub>    | [inch]  | 1.88  | 2.50                  | 3.13   | 3.75  | 4.38              | 5.00            | 6.25   |
| Embodmont donth (hommor drillod)       | h <sub>ef,min</sub> | [inch]  | 2-3/8 | 2-3/4                 | 3-1/8  | 3-1/2 | 3-1/2             | 4               | 5      |
| Embeument uepti (nammer unieu)         | h <sub>ef,max</sub> | [inch]  | 7-1/2 | 10                    | 12-1/2 | 15    | 17-1/2            | 20              | 25     |
| Min. part thickness                    | h <sub>min</sub>    | [inch]  | h     | <sub>ef</sub> + 1-1/4 |        |       | h <sub>ef</sub> + | 2d <sub>0</sub> |        |
| Anchor diameter                        | d <sub>a</sub>      | [inch]  | 3/8   | 1/2                   | 5/8    | 3/4   | 7/8               | 1               | 1-1/4  |
| Drill diameter                         | d <sub>0</sub>      | [mm]    | 7/16  | 9/16                  | 3/4    | 7/8   | 1                 | 1 -1/8          | 1 -3/8 |
| Installation torque                    | T <sub>inst.</sub>  | [ft-lb] | 15    | 33                    | 60     | 105   | 125               | 165             | 280    |

| Anchor size                            |                     |         | #3                             | #4     | #5     | #6    | #7                | #8                | #9     | #10   |
|----------------------------------------|---------------------|---------|--------------------------------|--------|--------|-------|-------------------|-------------------|--------|-------|
| Effectness factor (cracked concrete)   | k <sub>c,cr</sub>   | [-]     |                                |        |        |       | 17                |                   |        |       |
| Effectness factor (uncracked concrete) | k <sub>c,uncr</sub> | [-]     |                                |        |        |       | 24                |                   |        |       |
| Min. edge distance                     | $C_{min}$           | [inch]  | 1.88                           | 2.50   | 3.13   | 3.75  | 4.38              | 5.00              | 5.63   | 6.25  |
| Min. axial distance                    | S <sub>min</sub>    | [inch]  | 1.88                           | 2.50   | 3.13   | 3.75  | 4.38              | 5.00              | 5.63   | 6.25  |
| Embodmont donth                        | h <sub>ef,min</sub> | [inch]  | 2-3/8                          | 2-3/4  | 3-1/8  | 3-1/2 | 3-1/2             | 4                 | 4-1/2  | 5     |
|                                        | h <sub>ef,max</sub> | [inch]  | 7-1/2                          | 10     | 12-1/2 | 15    | 17-1/2            | 20                | 22-1/2 | 25    |
| Min. part thickness                    | h <sub>min</sub>    | [inch]  | h <sub>ef</sub> + <sup>-</sup> | 1-1/4" |        |       | h <sub>ef</sub> + | - 2d <sub>0</sub> |        |       |
| Anchor diameter                        | d <sub>a</sub>      | [inch]  | 3/8                            | 1/2    | 5/8    | 3/4   | 7/8               | 1                 | 1-1/8  | 1-1/4 |
| Drill diameter                         | d <sub>0</sub>      | [mm]    | 1/2                            | 5/8    | 3/4    | 7/8   | 1                 | 1-1/8             | 1-3/8  | 1-1/2 |
| Installation torque                    | T <sub>inst.</sub>  | [ft-lb] | 15                             | 33     | 60     | 105   | 125               | 165               | 220    | 280   |



**Technical Performance Specifications** 

#### 1) **PERFORMANCE DATA - CONCRETE** (THREADED ROD)

#### TENSION LOADS - Design acc. to ACI 318-11 Appendix D

|                                                                                     | Anchor size                                    |                          |                | 3/8   | 1/2    | 5/8    | 3/4                                  | 7/8    | 1      | 1-1/4   |  |
|-------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|----------------|-------|--------|--------|--------------------------------------|--------|--------|---------|--|
| Steel failure                                                                       |                                                |                          |                | 1     |        |        |                                      |        |        |         |  |
| Nominal strength tensi<br>steel strength, ASTM A                                    | on as governed by<br>36                        | N <sub>sa</sub>          | [lb]           | 4,495 | 8,230  | 13,110 | 19,400                               | 26,780 | 35,130 | 56,210  |  |
| Nominal strength tensi<br>steel strength, ASTM A                                    | on as governed by<br>193 Grade B7              | N <sub>sa</sub>          | [lb]           | 9,685 | 17,735 | 28,250 | 41,810                               | 57,710 | 75,710 | 121,135 |  |
| Reduction factor                                                                    |                                                | (                        | þ              | 0.75  |        |        |                                      |        |        |         |  |
| Nominal strength tension as governed by steel strength, ASTM F593 CW Stainless [lb] |                                                |                          | [lb]           | 7,750 | 14,190 | 22,600 | 28,430                               | 39,245 | 51,485 | 82,370  |  |
| Reduction factor                                                                    |                                                | φ                        |                |       |        |        | 0.65                                 |        |        |         |  |
| Pullout and concret                                                                 | e cone failure                                 |                          |                |       |        |        |                                      |        |        |         |  |
| Characteristic bond str                                                             | ength3) in concrete 2,                         | 500 psi                  |                |       |        |        |                                      |        |        |         |  |
| Temperature Range:                                                                  | uncracked concrete                             | $\tau_{\text{k,uncr}}$   |                | 1,450 | 1,450  | 1,450  | 1,450                                | 1,450  | 1,305  | 1,030   |  |
| 75°F/104°F 1)                                                                       | cracked concrete                               | $\tau_{\text{k,cr}}$     |                |       | 871    | 907    | 907                                  | 907    | 918    | 918     |  |
| Temperature Range:                                                                  | uncracked concrete                             | $\tau_{\text{k,uncr}}$   | Incil          | 823   | 823    | 823    | 823                                  | 823    | 743    | 588     |  |
| 122°F/176°F 1)                                                                      | cracked concrete                               | $\tau_{\text{k,cr}}$     | [hei]          |       | 498    | 519    | 519                                  | 519    | 519    | 525     |  |
| Temperature Range:                                                                  | uncracked concrete                             | $\tau_{\text{k,uncr}}$   |                | 405   | 405    | 405    | 405                                  | 405    | 366    | —       |  |
| 161°F/248°F 1)                                                                      | cracked concrete                               | $\tau_{\text{k,cr}}$     |                |       | 245    | 255    | 255                                  | 255    | 255    | 255     |  |
|                                                                                     | dry                                            | 4                        | ) <sub>d</sub> |       |        |        | 0.65                                 |        |        |         |  |
| Strength reduction                                                                  | wet                                            | φ                        | ws             |       |        |        | 0.55                                 |        |        |         |  |
| installation condition                                                              | water-filled                                   | ¢                        | wf             |       |        |        | 0.45                                 |        |        |         |  |
|                                                                                     | water-inieu                                    | к                        | wf             | 0.78  | 0.78   | 0.78   | 0.78                                 | 0.70   | 0.69   | 0.67    |  |
| Embedment denth                                                                     |                                                | h <sub>ef,min</sub>      | [inch]         | 2-3/8 | 2-3/4  | 3-1/8  | 3-1/2                                | 3-1/2  | 4      | 5       |  |
|                                                                                     |                                                | h <sub>ef,max</sub>      | [inch]         | 7-1/2 | 10     | 12-1/2 | 15                                   | 17-1/2 | 20     | 25      |  |
| Increasing factor                                                                   |                                                |                          |                |       |        | (      | f <sup>•</sup> c/2,500) <sup>0</sup> | ).13   |        |         |  |
| Concrete breakout                                                                   |                                                |                          |                |       |        |        |                                      |        |        |         |  |
| Effectness factor (crac                                                             | ss factor (cracked concrete) $k_{c,cr}$ [-] 17 |                          |                |       |        |        |                                      |        |        |         |  |
| Effectness factor (uncracked concrete) k <sub>c,uncr</sub> [-] 24                   |                                                |                          |                |       |        |        |                                      |        |        |         |  |
| Reduction factor Condi                                                              | tion B <sup>2)</sup>                           |                          | þ              |       |        |        | 0.65                                 |        |        |         |  |
| Seismic                                                                             |                                                |                          |                |       |        |        |                                      |        |        |         |  |
| Reduction factor for se                                                             | ismic tension                                  | $\alpha_{\text{N,seis}}$ | [-]            |       |        |        | 1.0                                  |        |        |         |  |
| Seismic<br>Reduction factor for se                                                  | ismic tension                                  | $\alpha_{N,seis}$        | [-]            |       |        |        | 1.0                                  |        |        |         |  |

The data in this table are evaluated according AC308-11 and ACI 355.4.

1 Long term temperature/ Short term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Room temperature range is not recognized by ACI 318-14 or ACI 318-11 and does not meet the minimum temperature requirement of ACI 355.4, Table 8.1 and consequently is not applicable to design under ACI 318-14, ACI 318-11 or current and past editions of the International Building Code (IBC). The tabulated values are provided for analysis and evaluation of existing conditions only.

Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, 2 as set forth in ACI 318-11 D.4.3. The tabulated value of  $\phi$  applies when the load combinations of Section 1605.2 of the IBC, or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of  $\phi$  must be determined in accordance with ACI 318-11 D.4.4.

Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind or 3 seismic, bond strengths may be increased by 43 percent for Temperature Range 122°F/176°F and 122 percent for Temperature Range 161°F/248°F.



Technical Performance Specifications

#### **PERFORMANCE DATA - CONCRETE** (THREADED ROD)

#### SHEAR LOADS - Design acc. to ACI 318-11 Appendix D

| Anchor size                                                                  | 3/8             | 1/2                   | 5/8   | 3/8    | 7/8    | 1                      | 1-1/4             |        |        |
|------------------------------------------------------------------------------|-----------------|-----------------------|-------|--------|--------|------------------------|-------------------|--------|--------|
| Steel failure                                                                |                 |                       |       |        |        |                        |                   |        |        |
| Nominal shear strength as governed by steel strength, ASTM A36               | V <sub>sa</sub> | [lb]                  | 2,695 | 4,940  | 7,860  | 11,640                 | 16,065            | 21,080 | 33,725 |
| Nominal shear strength as governed by steel strength, ASTM A193 Grade B7     | V <sub>sa</sub> | [lb]                  | 4,845 | 10,640 | 16,950 | 25,085                 | 34,625            | 45,425 | 72,680 |
| Reduction factor                                                             | (               | þ                     | 0.65  |        |        |                        |                   |        |        |
| Reduction factor for seismic shear                                           | (               | þ                     | 0.85  | 0.85   | 0.85   | 0.85                   | 0.85              | 0.80   | 0.80   |
| Nominal shear strength as governed by steel strength, ASTM F593 CW Stainless | V <sub>sa</sub> | [lb]                  | 4,650 | 8,515  | 13,560 | 17,055                 | 23,545            | 30,890 | 49,420 |
| Reduction factor                                                             |                 | þ                     |       |        |        | 0.60                   |                   |        |        |
| Reduction factor for seismic shear                                           | (               | þ                     | 0.85  | 0.85   | 0.85   | 0.85                   | 0.85              | 0.80   | 0.80   |
| Concrete edge failure                                                        |                 |                       |       |        |        |                        |                   |        |        |
| Effective length of anchor in shear loading                                  | l <sub>e</sub>  | [Inch]                |       |        |        | min (h <sub>ef</sub> ; | 8d <sub>a</sub> ) |        |        |
| Outside diameter of anchor                                                   | d <sub>a</sub>  | d <sub>a</sub> [Inch] |       | 1/2    | 5/8    | 3/8                    | 7/8               | 1      | 1-1/4  |
| Reduction factor Condition B <sup>1)</sup>                                   | (               | þ                     |       |        |        | 0.65                   |                   |        |        |

The data in this table are evaluated according AC308-11 and ACI 355.4.

1 Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-11 D.4.3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.



**Technical Performance Specifications** 

#### **PERFORMANCE DATA - CONCRETE** (REBAR)

TENSION LOADS - Design acc. to ACI 318-11 Appendix D

| A                                                               | nchor size                       |                          |                | #3     | #4     | #5     | #6                   | #7                         | #8     | #9     | #10     |  |
|-----------------------------------------------------------------|----------------------------------|--------------------------|----------------|--------|--------|--------|----------------------|----------------------------|--------|--------|---------|--|
| Steel failure                                                   |                                  |                          |                |        |        |        |                      |                            |        |        |         |  |
| Nominal tension strengt<br>steel strength, ASTM A6              | h as governed by<br>15 Grade 60  | N <sub>sa</sub>          | [lb]           | 9,900  | 18,000 | 27,900 | 39,600               | 54,000                     | 71,100 | 90,000 | 114,300 |  |
| Reduction factor                                                |                                  | (                        | þ              |        |        |        | 0.                   | 65                         |        |        |         |  |
| Nominal tension strengt<br>steel strength, ASTM A7              | h as governed by<br>06, Grade 60 | N <sub>sa</sub>          | [lb]           | 8,800  | 16,000 | 24,800 | 35,200               | 48,000                     | 63,200 | 80,000 | 101,600 |  |
| Reduction factor                                                |                                  | (                        | þ              | 0.75   |        |        |                      |                            |        |        |         |  |
| Pullout and concrete                                            | e cone failure                   |                          |                |        |        |        |                      |                            |        |        |         |  |
| Characteristic bond strength <sup>3)</sup> in concrete 2500 psi |                                  |                          |                |        |        |        |                      |                            |        |        |         |  |
| Temperature Range:                                              | uncracked conc.                  | $\tau_{\text{k,uncr}}$   |                | 1,450  | 1,450  | 1,450  | 1,450                | 1,450                      | 1,305  | 1,160  | 1,030   |  |
| 75°F/104°F <sup>1)</sup>                                        | cracked conc.                    | $\tau_{\text{k,cr}}$     |                | —      | 871    | 907    | 907                  | 907                        | 918    | 918    | 918     |  |
| Temperature Range:                                              | uncracked conc.                  | $\tau_{\text{k,uncr}}$   | [noi]          | 823    | 823    | 823    | 823                  | 823                        | 743    | 668    | 588     |  |
| 122°F/176°F <sup>1)</sup>                                       | cracked conc.                    | $\tau_{\text{k,cr}}$     | lheil          | —      | 331    | 345    | 345                  | 345                        | 345    | 345    | 349     |  |
| Temperature Range:                                              | uncracked conc.                  | $\tau_{\text{k,uncr}}$   |                | 405    | 405    | 405    | 405                  | 405                        | 366    | 329    | —       |  |
| 161°F/248°F <sup>1)</sup>                                       | cracked conc.                    | $\tau_{\text{k,cr}}$     |                | 142    | 163    | 170    | 170                  | 170                        | 170    | 172    | 172     |  |
|                                                                 | dry                              | ¢                        | ) <sub>d</sub> |        |        |        | 0.                   | 65                         |        |        |         |  |
| Strength reduction                                              | wet                              | φ                        | ws             |        |        |        | 0.                   | 55                         |        |        |         |  |
| istallation condition                                           | water filled                     | φ                        | wf             |        |        |        | 0.                   | 45                         |        |        |         |  |
|                                                                 | Water-Inieu                      | к                        | wf             | 0.78   | 0.78   | 0.78   | 0.78                 | 0.70                       | 0.69   | 0.68   | 0.67    |  |
|                                                                 | Embedment depth                  | h <sub>ef,min</sub>      | [inch]         | 2-3/8  | 2-3/4  | 3-1/8  | 3-1/2                | 3-1/2                      | 4      | 4-1/2  | 5       |  |
|                                                                 |                                  | h <sub>ef,max</sub>      | [inch]         | 7-1/2  | 10     | 12-1/2 | 15                   | 17-1/2                     | 20     | 22-1/2 | 25      |  |
|                                                                 | Increasing factor                |                          |                |        |        |        | (fʻ <sub>c</sub> /25 | <b>00)</b> <sup>0.13</sup> |        |        |         |  |
| Concrete breakout                                               |                                  |                          |                |        |        |        |                      |                            |        |        |         |  |
| Effectness factor (crack                                        | ed concrete)                     | k <sub>c,uncr</sub>      | [-]            | [-] 17 |        |        |                      |                            |        |        |         |  |
| Effectness factor (uncra                                        | cked concrete)                   | k <sub>c,uncr</sub>      | [-] 24         |        |        |        |                      |                            |        |        |         |  |
| Reduction factor Condit                                         | ion B <sup>2)</sup>              | (                        | φ 0.65         |        |        |        |                      |                            |        |        |         |  |
| Concrete breakout                                               |                                  |                          |                |        |        |        |                      |                            |        |        |         |  |
| Reduction factor for seis                                       | smic tension                     | $\alpha_{\text{N,seis}}$ | [-]            |        |        |        | 1                    | .0                         |        |        |         |  |

The data in this table are evaluated according AC308-11 and ACI 355.4.

1 Long term temperature/ Short term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Room temperature range is not recognized by ACI 318-14 or ACI 318-11 and does not meet the minimum temperature requirement of ACI 355.4, Table 8.1 and consequently is not applicable to design under ACI 318-14, ACI 318-11 or current and past editions of the International Building Code (IBC). The tabulated values are provided for analysis and evaluation of existing conditions only.

2 Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-11 D.4.3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.

3 Characteristic bond strengths are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind or seismic, bond strengths may be increased by 43 percent for Temperature Range 122°F/176°F and 122 percent for Temperature Range 161°F/248°F.



Technical Performance Specifications

### **PERFORMANCE DATA - CONCRETE** (REBAR)

SHEAR LOADS - Design acc. to ACI 318-11 Appendix D, hammer and diamond drilled bore holes

| Anchor size                                                                  |                                                     |        | #3    | #4     | #5     | #6     | #7                                  | #8     | #9     | #10    |
|------------------------------------------------------------------------------|-----------------------------------------------------|--------|-------|--------|--------|--------|-------------------------------------|--------|--------|--------|
| Steel failure                                                                |                                                     |        |       |        |        |        |                                     |        |        |        |
| Nominal shear strength as governed<br>by steel strength, ASTM A615 Grade 60  | V <sub>sa</sub>                                     | [lb]   | 5,940 | 10,800 | 16,740 | 23,760 | 32,400                              | 42,660 | 54,000 | 68,580 |
| Reduction factor                                                             | φ 0.60                                              |        |       |        |        |        |                                     |        |        |        |
| Reduction factor for seismic shear                                           |                                                     | φ      | 0.70  |        |        |        |                                     |        |        |        |
| Nominal shear strength as governed<br>by steel strength, ASTM A706, Grade 60 | V <sub>sa</sub>                                     | [lb]   | 5,280 | 9,600  | 14,880 | 21,120 | 28,800                              | 37,920 | 48,000 | 60,960 |
| Reduction factor                                                             |                                                     | φ      |       |        |        | (      | 0.65                                |        |        |        |
| Reduction factor for seismic shear                                           |                                                     | φ      |       |        |        | (      | ).70                                |        |        |        |
| Concrete edge failure                                                        |                                                     |        |       |        |        |        |                                     |        |        |        |
| Effective length of anchor in shear loading                                  | I <sub>e</sub>                                      | [Inch] |       |        |        | min (  | h <sub>ef</sub> ; 8d <sub>a</sub> ) |        |        |        |
| Outside diameter of anchor                                                   | d <sub>a</sub> [Inch] 3/8 1/2 5/8 3/8 7/8 1 1-1/8 1 |        |       |        |        |        | 1-1/4                               |        |        |        |
| Reduction factor Condition B <sup>1)</sup>                                   |                                                     | φ      |       |        |        | (      | 0.65                                |        | ·      |        |

The data in this table are evaluated according AC308-11 and ACI 355.4.

1 Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-11 D.4.3. The tabulated value of φ applies when the load combinations of Section 1605.2 of the IBC, or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318-11 D.4.4.



Technical Performance Specifications

#### **ALLOWABLE LOADS - CONCRETE (THREADED ROD)**

The allowable loads are only valid for single anchor for a roughly design, if the following conditions are valid:

min edge distance  $c_a \ge c_{ac}$  min spacing  $S \ge 2 \text{ x } C_{Na}$ 

min thickness concrete  $h \ge 2 x h_{ef}$  concrete compressive strength f'c  $\ge 2500$  psi

Static loads only. Allowable stress design conversion  $\alpha$ =1.2D + 1.6L = 1.4

If the conditions are not fulfilled the loads must be calculated acc. to ACI 318-11 Appendix D.

The safety factors are already included in the allowable loads.

| Anchor size                                   |                            | 3/8    | 1/2      | 5/8   | 3/4   | 7/8    | 1      | 1-1/4  |        |  |
|-----------------------------------------------|----------------------------|--------|----------|-------|-------|--------|--------|--------|--------|--|
| Allowable tension load for all Steel strength |                            |        |          |       |       |        |        |        |        |  |
| T                                             | N <sub>allowable,ucr</sub> | [lb]   | 2,151    | 3,688 | 5,122 | 7,991  | 11,474 | 14,752 | 16,009 |  |
| Temperature Range: 75°F/T04°F T)              | N <sub>allowable,cr</sub>  | [lb]   |          | 2,215 | 3,204 | 4,998  | 71,77  | 10,377 | 14,269 |  |
| Temperature Depart 100°E (170°E 1)            | N <sub>allowable,ucr</sub> | [lb]   | 1,221    | 2,093 | 2,907 | 4,535  | 6,512  | 8,399  | 9,139  |  |
| Temperature Range: 122-F/176-F 1)             | N <sub>allowable,cr</sub>  | [lb]   |          | 1,267 | 1,833 | 2,860  | 4,107  | 5,867  | 8,160  |  |
| Tomporaturo Papao: 161°E/248°E 1)             | N <sub>allowable,ucr</sub> | [lb]   | 601      | 1,030 | 1,431 | 2,232  | 3,205  | 4,137  | —      |  |
|                                               | N <sub>allowable,cr</sub>  | [lb]   |          | 623   | 901   | 1,405  | 2,018  | 2,883  | 3,964  |  |
| Allowable shear load for steel strengt        | th, ASTM A36               |        |          |       |       |        |        |        |        |  |
| Tomporature Pango: 75°E/104°E 1)              | $V_{allowable,ucr}$        | [lb]   | 1,251    | 2,294 | 3,649 | 5,404  | 7,459  | 9,787  | 15,658 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   | _        | 2,294 | 3,649 | 5,404  | 7,459  | 9,787  | 15,365 |  |
| Tomporature Pango: 122°E/176°E 1)             | V <sub>allowable,ucr</sub> | [lb]   | 1,251    | 2,294 | 3,649 | 5,404  | 7,459  | 9,787  | 15,655 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 2,294 | 3,649 | 5,404  | 7,459  | 9,787  | 15,365 |  |
| Temperature Range: 161°E/2/18°E 1)            | V <sub>allowable,ucr</sub> | [lb]   | 1,251    | 2,294 | 3,466 | 5,404  | 7,459  | 9,787  |        |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 1,732 | 2,503 | 3,905  | 5,608  | 8,011  | 11,015 |  |
| Allowable shear load for steel str            | ength, ASTM                | A193 G | irade B7 |       |       |        |        |        |        |  |
|                                               | V <sub>allowable,ucr</sub> | [lb]   | 2,249    | 4,940 | 7,045 | 11,204 | 15,298 | 20,497 | 21,511 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 3,843 | 5,032 | 8,003  | 10,927 | 14,641 | 15,365 |  |
| Temperature Bange: 122°E/176°E 1)             | V <sub>allowable,ucr</sub> | [lb]   | 2,249    | 4,940 | 7,045 | 11,204 | 15,298 | 20,497 | 21,511 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 3,520 | 5,032 | 7,949  | 10,927 | 14,641 | 153,65 |  |
| Temperature Bange: 161°E/2/8°E <sup>1)</sup>  | V <sub>allowable,ucr</sub> | [lb]   | 1,670    | 2,863 | 3,976 | 6,203  | 8,906  | 11,498 | —      |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 1,732 | 2,503 | 3,905  | 5,608  | 8,011  | 11,015 |  |
| Allowable shear load for steel str            | ength, ASTM                | F593 C | W Stain  | less  |       |        |        |        |        |  |
| Tomporature Papae: 75°E/101°E 1               | $V_{allowable,ucr}$        | [lb]   | 1,993    | 3,649 | 5,811 | 7,309  | 10,091 | 13,239 | 21,180 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 3,649 | 5,032 | 7,309  | 10,091 | 13,239 | 15,365 |  |
| Temperature Bange: 122°E/176°E 1)             | V <sub>allowable,ucr</sub> | [lb]   | 1,993    | 3,649 | 5,811 | 7,309  | 10,091 | 13,239 | 21,180 |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   | —        | 3,520 | 5,032 | 7,309  | 10,091 | 13,239 | 15,365 |  |
| Temperature Bange: 161°E/2/8°E 1)             | V <sub>allowable,ucr</sub> | [lb]   | 1,670    | 2,863 | 3,976 | 6,203  | 8,906  | 11,498 |        |  |
|                                               | V <sub>allowable,cr</sub>  | [lb]   |          | 1,732 | 2,503 | 3,905  | 5,608  | 8,011  | 11,015 |  |
| Embedment depth                               | h <sub>ef</sub>            | [Inch] | 3-1/2    | 4-1/2 | 5     | 6-1/2  | 8      | 10     | 11     |  |
| Edge distance                                 | C <sub>ca</sub>            | [Inch] | 6.51     | 8.36  | 9.29  | 12.08  | 14.87  | 17.82  | 17.83  |  |
| Axial distance                                | C <sub>Na</sub>            | [Inch] | 4.31     | 5.74  | 7.18  | 8.61   | 10.05  | 10.89  | 12.10  |  |

1 Long term temperature/ Short term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Room temperature range is not recognized by ACI 318-14 or ACI 318-11 and does not meet the minimum temperature requirement of ACI 355.4, Table 8.1 and consequently is not applicable to design under ACI 318-14, ACI 318-11 or current and past editions of the International Building Code (IBC). The tabulated values are provided for analysis and evaluation of existing conditions only.



**Technical Performance Specifications** 

#### **ALLOWABLE LOADS - CONCRETE (REBAR)**

The allowable loads are only valid for single anchor for a roughly design, if the following conditions are valid:

min spacing S  $\geq$  2 x C<sub>Na</sub>

min edge distance  $c_{_a} \geqq c_{_{ac}}$  min thickness concrete h P 2 x  $h_{_{ef}}$ concrete compressive strength f'c  $\geq$  2500 psi

Static loads only. Allowable stress design conversion  $\alpha = 1.2D + 1.6L = 1.4$ 

If the conditions are not fulfilled the loads must be calculated acc. to ACI 318-11 Appendix D.

The safety factors are already included in the allowable loads.

| Anchor siz                  | ze                         |        | #3    | #4    | #5    | #6    | #7     | #8     | #9     | #10    |
|-----------------------------|----------------------------|--------|-------|-------|-------|-------|--------|--------|--------|--------|
| Allowable tension load for  | all steel stre             | ength  |       |       |       |       |        |        | 1      |        |
| Temperature Range A:        | N <sub>allowable,ucr</sub> | [lb]   | 2,151 | 3,688 | 5,122 | 7,991 | 11,474 | 14,752 | 16,227 | 16,009 |
| 75°F/104°F <sup>1)</sup>    | N <sub>allowable,cr</sub>  | [lb]   | —     | 2,215 | 3,204 | 4,998 | 7,177  | 10,377 | 12,842 | 14,269 |
| Temperature Range A:        | N <sub>allowable,ucr</sub> | [lb]   | 1,221 | 2,093 | 2,907 | 4,535 | 6,512  | 8,399  | 9,345  | 9,139  |
| 122°F/176°F <sup>1)</sup>   | N <sub>allowable,cr</sub>  | [lb]   |       | 842   | 1,219 | 1,901 | 2,730  | 3,900  | 4,826  | 5,425  |
| Temperature Range B:        | N <sub>allowable,ucr</sub> | [lb]   | 601   | 1,030 | 1,431 | 2,232 | 3,205  | 4,137  | 4,602  | —      |
| 161°F/248°F <sup>1)</sup>   | N <sub>allowable,cr</sub>  | [lb]   | _     | 415   | 601   | 937   | 1,345  | 1,922  | 2,406  | 2,673  |
| Allowable shear load for al | l steel stren              | gth    |       |       |       |       |        |        |        |        |
| Temperature Range A:        | V <sub>allowable,ucr</sub> | [lb]   | 2,451 | 4,457 | 6,909 | 9,806 | 13,371 | 17,606 | 22,286 | 21,511 |
| 75°F/104°F <sup>1)</sup>    | V <sub>allowable,cr</sub>  | [lb]   |       | 3,843 | 5,032 | 8,003 | 10,927 | 14,641 | 16,113 | 15,365 |
| Temperature Range A:        | Vallowable,ucr             | [lb]   | 2,451 | 4,457 | 6,909 | 9,806 | 13,371 | 17,606 | 22,286 | 21,511 |
| 122°F/176°F <sup>1)</sup>   | V <sub>allowable,cr</sub>  | [lb]   |       | 2,340 | 3,387 | 5,284 | 7,587  | 10,838 | 13,413 | 15,076 |
| Temperature Range B:        | Vallowable,ucr             | [lb]   | 1,670 | 2,863 | 3,976 | 6,203 | 8,906  | 11,498 | 12,791 | —      |
| 161°F/248°F <sup>1)</sup>   | Vallowable,cr              | [lb]   | —     | 1,152 | 1,669 | 2,604 | 3,738  | 5,341  | 6,687  | 7,430  |
| Embedment depth             | h <sub>ef</sub>            | [Inch] | 3-1/2 | 4-1/2 | 5     | 6-1/2 | 8      | 10     | 11     | 11     |
| Edge distance               | C <sub>ca</sub>            | [Inch] | 6.51  | 8.36  | 9.29  | 12.08 | 14.87  | 17.82  | 18.70  | 17.83  |
| Axial distance              | C <sub>Na</sub>            | [Inch] | 4.31  | 5.74  | 7.18  | 8.61  | 10.05  | 10.89  | 11.55  | 12.10  |

1 Long term temperature/ Short term temperature. Long term concrete temperatures are roughly constant over significant periods of time. Short term elevated temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling. Room temperature range is not recognized by ACI 318-14 or ACI 318-11 and does not meet the minimum temperature requirement of ACI 355.4, Table 8.1 and consequently is not applicable to design under ACI 318-14, ACI 318-11 or current and past editions of the International Building Code (IBC). The tabulated values are provided for analysis and evaluation of existing conditions only.

Technical Performance Specifications



#### **FIRE RESISTANCE**

Fire resistance times in combination with threaded rods (3/8" to 1-1/4") made of zinc plated steel, property class ASTM A36 or higher.

|             | I                    | Fire resistance      | time in minute       | S                     |
|-------------|----------------------|----------------------|----------------------|-----------------------|
| Anchor size | 30<br>max F<br>[lbf] | 60<br>max F<br>[lbf] | 90<br>max F<br>[lbf] | 120<br>max F<br>[lbf] |
| 3/8"        | $\leq$ 504           | $\leq$ 344           | ≦ 181                | ≦ 101                 |
| 1/2"        | ≦ 823                | $\leq$ 635           | ≦ 447                | ≦ 354                 |
| 5/8"        | ≦ 1,306              | ≦ 1,008              | ≦ 709                | ≦ 562                 |
| 3/4"        | ≦ 1,933              | ≦ 1,491              | ≦ 1,049              | ≦ 831                 |
| 7/8"        | ≦ 2,666              | $\leq$ 2,057         | ≦ 1,447              | ≦ 1,147               |
| 1"          | ≦ 3,498              | ≦ 2,699              | ≦ 1,899              | ≦ 1,505               |
| 1-1/4"      | ≦ 5,592              | ≦ 4,314              | ≦ 3,035              | ≦ 2,405               |

The special details according to the Assessment Report 21825\_2en - condensed version must be observed.